Edit page

CW High School Geometry A

1. Beginning Geometry (20.00\%)

Learning Targets

1.1 I can apply the Pythagorean Theorem to solve for any distance in a real world problem involving right triangles.

Learning Target	Descriptor	Definition
$\mathbf{4}$	Proficient	I can apply the Pythagorean Theorem to solve for any distance in a real world problem involving right triangles.
$\mathbf{3}$	Developing	I can use the converse of the theorem to determine if three given lengths will form a right triangle.
$\mathbf{2}$	Minimal can find the length of any missing side of a right triangle by applying the Pythagorean Theorem.	I can identify the legs and hypotenuse of a right triangle.
$\mathbf{1}$	No Evidence	No evidence shown.

1.2 I can apply the Midpoint Formula to find the coordinates of a missing endpoint within the context of a story problem.

Learning Target	Descriptor	Definition
4	Proficient	I can apply the Midpoint Formula to find the coordinates of a missing endpoint within the context of a story problem.
3	Developing	I can generate a missing endpoint of a line segment using the Midpoint Formula when directly instructed to do so.
2	Basic	I can use the Midpoint Formula in direct applications when given the two end points.
1	Minimal	I can identify when I need to use the Midpoint Formula to find the center of a line segment.
0	No Evidence	No evidence shown.

1.3 I can select and solve the proper formula to find the distance between two endpoints in a real world application problem.

Learning Target	Descriptor	Definition
4	Proficient	I can select and solve the proper formula to find the distance between two endpoints in a real world application problem.
3	Developing	I can calculate the distance between two endpoints using the Distance Formula when asked to find the length of a line segment.
2	Basic	I can correctly identify ($\mathrm{x} 1, \mathrm{y} 1)$ and $(\mathrm{x} 2, \mathrm{y} 2)$ and put them into the proper places of the Distance Formula.
1	Minimal	I can identify when I need to use the Distance Formula to find the length of a line segment.
0	No Evidence	No evidence shown.

2. Line and Angle Relationships (20.00\%)

!arning Targets

Learning Target	Descriptor	Definition
4	Proficient	I can prove pairs of lines are either parallel or perpendicular to each other by calculating and interpreting their slopes.
3	Developing	I can write the equation of a line which will be either parallel or perpendicular to a given line, with a specified y-intercept.
2	Basic	I can compute the slope of a line using the slope formula and generate a slope which will be perpendicular to the line.
1	Minimal	I can compute the slope of a line using the slope formula.

2.2 I can identify supplementary, complementary, and vertical angles when presented in a multiple angle diagram and use their definitions to solve for missing angle measurements when given algebraic expressions.

Learning Target	Descriptor	Definition
4	Proficient	I can identify supplementary, complementary, and vertical angles when presented in a multiple angle diagram and use their definitions to solve for missing angle measurements when given algebraic expressions.
3	Developing	I can identify supplementary, complementary, and vertical angles when presented in a multiple angle diagram and use their definitions to solve for missing angle measurements when given direct angle measurements.
2	Basic	I can identify supplementary, complementary, and vertical angles when presented in a single angle relationship diagram and use their definitions to solve for missing angle measurements when given direct angle measurements.
1	Minimal	I can identify vertical angles, complementary angles, and linear pairs of angles.
0	No Evidence	No evidence shown.

2.3 I can utilize the angle relationships to find angle measurements given algebraic expressions in multiple angle situations.

Learning Target	Descriptor	Definition
$\mathbf{4}$	Proficient	I can utilize the angle relationships to find angle measurements given algebraic expressions in multiple angle situations.
$\mathbf{3}$	Beveloping	I can solve for angle relationships when only one is presented at a time given algebraic expressions.
I can solve for angle relationships when only one is presented at a time and when given a direct angle		
measurement.		

Edit page
Learning Target Descriptor

4	Proficient	I can identify and name all 8 angle pairs present when transversals cross sets of parallel lines.
$\mathbf{3}$	Beveloping	I can identify and name Corresponding Angles, Consecutive (Same-Side) Interior Angles, and Consecutive (Same-Side) Exterior Angles when transversals cross sets of parallel lines.
I can identify and name Alternate Interior Angles and Alternate Exterior Angles when transversals cross sets of parallel lines.		
$\mathbf{0}$	Minimal	I can identify and name Linear Pairs and Vertical Angles when transversals cross sets of parallel lines.

Edit page

CW High School Geometry A

3. Transformations (20.00\%)

Learning Targets

3.1 I can draw the rotation of a figure about the origin of a graph. I can draw the reflection of a figure across a diagonal line.

Learning Target	Descriptor	Definition
4	Proficient	I can draw the rotation of a figure about the origin of a graph. I can draw the reflection of a figure across a diagonal line.
3	Developing	I can determine the translation vector used to move a figure from one location to another, when given a diagram.
2	Basic	I can draw the translation of a figure using a translation vector.
1	Minimal	I can draw the reflection of a figure across either the x or y -axis
0	No Evidence	No evidence shown.

3.2 I can utilize diagrams to determine if a dilation is an enlargement or reduction and provide the proper scale factor which describes the dilation by calculating the lengths of corresponding sides.

3.3 I can determine if a figure has linear and/or rotational symmetry, draw in all lines of symmetry, and determine the order and magnitude of the rotation.

Learning Target	Descriptor	Definition
$\mathbf{4}$	ProficientI can determine if a figure has linear and/or rotational symmetry, draw in all lines of symmetry, and determine the order and magnitude of the rotation.	
$\mathbf{3}$	Beveloping I can determine if a figure has rotational symmetry and calculate the magnitude of the rotation.	I can determine if a figure has rotational symmetry and calculate the order of rotation.
$\mathbf{2}$	Minimal	I can demonstrate the linear symmetry of a figure by drawing in all the lines of symmetry for that figure.

CW High School Geometry A

Learning Target	Descriptor		Definition
0	No Evidence \quad No evidence shown.		
0			

4. Circles (20.00%)

Learning Targets

4.1 I can I can identify all the major components of a circle including lines segments, angles, and arcs.

Learning Target Descripto

4 Proficient I can I can identify all the major components of a circle including lines segments, angles, and arcs.

3 Developing I can identify chords, secants, and tangents.

2	Basic	I can differentiate between central and inscribed angles.
$\mathbf{1}$	Minimal	I can differentiate between the diameter and radius of a circle.
$\mathbf{0}$	No Evidence	No evidence shown.

4.2 I can utilize the measure of the central angle of a circle to calculate the length of an inscribed arc.

Learning Target	Descriptor	Definition
4	Proficient	I can utilize the measure of the central angle of a circle to calculate the length of an inscribed arc.
3	Developing	I can utilize the the relationships between central and inscribed angles and their corresponding arcs when given multiple angles in the same diagram.
2	Basic	I can compute the measure of an inscribed angle given the corresponding arc and compute the measure of the arc given the corresponding inscribed angle.
1	Minimal	I can compute the measure of a central angle given the corresponding arc and compute the measure of the arc given the corresponding central angle.
0	No Evidence	No evidence shown.

4.3 I can compute the area of circles and sectors given the circumference of the circle.

Learning Target	Descriptor
$\mathbf{4}$	Proficient I can compute the area of circles and sectors given the circumference of the circle.
$\mathbf{3}$	Developing I can compute the area of a sector given the measure of the negative space or diameter.
$\mathbf{1}$	Minimal l can compute the area of a sector given the measure of the central angle and radius.

CW High School Geometry A

Learning Target	Descriptor	Definition	
0	No Evidence	No evidence shown.	

4.4 I can derive the equation of a circle given the center and a point on the circumference of the circle.
Learning Target Descriptor
Droficient I can derive the equation of a circle given the center and a point on the circumference of the circle.
Developing I can derive the equation of a circle from a diagram on the Cartesian plane.
Minimal I can identify the center of a circle and the length of its radius from the equation.
No Evidence No evidence shown.
5. Radical Numbers and Exponents (20.00\%)

Learning Targets

5.1 I can select and apply the proper Law of Exponents needed to simplify a rational expression which contains coefficients without having negative exponents.

Learning Target	Descriptor		
$\mathbf{4}$	Proficient		I can select and apply the proper Law of Exponents needed to simplify a rational expression which
:---			
contains coefficients without having negative exponents.			

CW High School Geometry A

Learning Target	Descriptor	Definition
0	No Evidence \quad No evidence shown.	

5.3 I can simplify a fraction which has a radical number in the numerator and denominator by multiplying by a version of one and reducing it to the simplest form.

Learning Target	Descriptor	Definition
4	Proficient	I can simplify a fraction which has a radical number in the numerator and denominator by multiplying by a version of one and reducing it to the simplest form.
3	Developing	I can simplify a fraction which has a radical number in the denominator by multiplying by a version of one and reducing it to the simplest form.
2	Basic	I can simplify a fraction which has a radical number in the numerator and denominator by multiplying by a version of one when no further reducing is needed.
1	Minimal	I can simplify a fraction which has a radical number in the denominator by multiplying by a version of one when no further reducing is needed.
0	No Evidence	No evidence shown.

Submitted on 7/29/2022 by

